“天为什么是蓝色的”一百年

方励之


         “天空为什么是蓝色?”正确的物理解释完成于1910年,迄今整一百年。“天蓝”物理学的一个重要应用,是光纤通讯,即高锟先生去年获得物理诺贝尔奖的项目。

         “天蓝”物理学似乎很普及。凡是看过“十万个为什麽”的初中生,都能说出它的“标准答案”:

         “空气中会有许多微小的尘埃、水滴、冰晶等物质,当太阳光通过空气时,波长较短的蓝、紫、靛等色光,很容易被悬浮在空气中的微粒阻挡,从而使光线散射向四方,使天空呈现出蔚蓝色。”

         中文世界中,大小权威的教育和科学网站,大多仍采用上述“标准答案”,几乎一字不差。

         这个“天蓝”解释,基本上是十九世纪中叶的水平。它是英国物理学家丁铎尔(John Tyndall,1820-1893)首创的。常称作丁铎尔散射模型。确实,“波长较短的蓝色光,容易被悬浮在空气中的微粒阻挡,…..散射向四方”。但它并不是“天蓝“的真正原因。如果天蓝主要是由水滴冰晶等微粒的散射引起的,那末,天空的颜色和深浅,就应随着空气湿度的变化而变化。因为当湿度变化时,空气中水滴冰晶的数目会明显变化。潮湿地区和沙漠地区的湿度差别很大,但天空是一样的蓝。丁铎尔散射模型解释不了。到十九世纪末叶,丁的天蓝解释已被质疑。

         1880 年代,瑞利(John Rayleigh,1842-1919)注意到,根本不必求助尘埃、水滴、冰晶等空气中的微粒,空气本身的氧和氮等分子对阳光就有散射,而且也是蓝色光容易被散射。所以,空气分子的散射就可以作为“天蓝”的主因。

         然而,各个分子有散射,不等于空气整体会有蓝色。如果纯净的空气是极均匀的,分子再多也没有“天蓝”。就像一块极平的镜子,只有折射或反射,而极少 散射。在均匀一致的环境中,不同分子的散射相互抵消了。就如在一个集体纪律超强的环境(如监狱)中,每个人的独立和散漫行为被彻底压缩。而“天蓝”靠的就是分子各自的独立和相互不干涉,或少干涉。

         为此,瑞利假定,空气不是分子的“监狱”。相反,氧和氮等分子,无规行走,随机分布。瑞利由这个模型算出的定量结果,很好地符合天蓝的性质。1899年,瑞利写了一篇总结式的文章“论天空蓝色之起源”[1],开宗明义就说:

         “即使没有外来的微粒,我们依旧会有蓝色的天”。

“外来的微粒”即指丁铎尔散射所需要的。从此,丁铎尔的天蓝理论被放弃。瑞利散射成为“天蓝”理论的主流。

         瑞利的天蓝理论虽然很成功,瑞利的分子无规分布假定,也有根据。然而,瑞利实质上还要假定空气是所谓理想气体,这是一个不大的,但也不可忽略的弱点。因为空气不是理想气体。

         1910 年,爱因斯坦最终解决了这个问题。爱因斯坦用当时刚刚发展的熵(混乱的度量)的统计热力学理论证明:那怕最纯净的空气,也是有涨落起伏的。空气本身的密度涨落也能散射,也是蓝色光容易被散射。密度涨落的散射,不多也不少,正好能产生我们看到的蓝天。如果空气是理想气体,爱因斯坦的结果就同瑞利的一样。所以,简单地说,天空蓝色之起因是:

         “空气中有不可消除的‘杂质’,即空气自身的涨落。密度涨落等对阳光的散射,形成了蓝天。”

         “天蓝”起源物理不是爱因斯坦首创,但最完整的理论是爱因斯坦奠定的。所以说,“天蓝”物理学,完成于1910年。

         瑞利和爱因斯坦的“天蓝”理论,是普遍适用的。可以用来解释纯净空气中的“蓝天”现象,也可以用来解释纯净的水,纯净的玻璃等液体或固体中的“蓝天”现象。当然,也有该理论不适用的地方。多年前,听到过有人对着“蓝天”发(歌)情,“我爱祖国的蓝天”,千万不要误听为“我爱祖国的独立而又无规游荡的分子们”。

         高锟先生在他为“光纤通讯”奠基的第一篇论文[3]中引用的第一个物理公式,就是爱因斯坦的“天蓝” 瑞利散射公式(即Einstein-Smoluchowski 公式)。玻璃是凝固了的液体。即使最理想的玻璃,没有气泡,没有缺陷,玻璃中依旧有不可消除的‘杂质’,即玻璃本身的不可消除的涨落。在光纤中传播的讯号(光波),会被玻璃的涨落散射。 “天蓝”机制,是光纤通讯讯号损失的一个物理主因。它是不能用光纤制造技术消除的。只能选择“不太蓝”的光,减低它的影响。

         不少权威的教育和科学(中文)网站上,正在报导高先生是“影响世界的华人”之最。高先生的影响,确实遍及全球。有趣的是,这些网站本身,似乎并不在“被影响”之列。比如,本文开头引用的“天蓝”解释,就还完全没有“被影响”。对青少年来说,那些“标准解释”虽然不算是有毒奶粉,但也是过期一百年的奶粉。

         [1] J. Rayleigh,Phil. Mag. XLVII, 375, 1899
         [2] A. Einstein, Ann. Physik, 33, 1275, 1910
         [3] C. Kao, Proc. IEE, 113, No.7, 1966


2010 ,电动力学课正讲到瑞利散射, Tucson